FULL-PROCESS-KINETICS PCR ANALYSIS: A HOLISTIC MODEL TO PCR DATA INTERPRETATION.

Lievens, A.1, Van Aelst, S.2, Van den Bulcke, M.1,3 And Goetghebeur, E.2

1 Platform for Molecular Biology and Biotechnology, Scientific Institute of Public Health, J. Wytsmanstreet 14, B-1050 Brussels, Belgium
2 Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
3 European Commission, Joint Research Center, Institute for Health and Consumer Protection, Molecular Biology and Genomics Unit, via E. Fermi 2749, 21027 Ispra (VA), Italy

Current analysis methods: Adequate performance when efficiency is comparable.

Challenge: Small differences in efficiency between reactions => considerable quantification errors.

Solution: Estimation of initial reaction efficiency.

Consequences: Classical assays demand additional analysis and costs.

Remedy: Single reaction efficiency calculation.

Current Methodology in Single Reaction Efficiency Calculation

- limited to a window of application
- assumes constant efficiency
- "exponential phase" may be hard to define

FPK-PCR Procedure

A) Cycle efficiencies are calculated & their double log is regressed against the respective fluorescence values

B) A bilinear model is fitted to the transformed cycle efficiencies, revealing changes in efficiency throughout the reaction.

C) Fluorescence values are reconstructed, creating quality control over the efficiency estimates.

Results

- **Improved maximal efficiency** estimation
- **FPK-PCR explains fluorescence increases** better than other models
- **Precision and accuracy** are comparable to the golden standard
- Results allow a more **in-depth analysis** of real time PCR data
- FPK-PCR allows **reliable** detection of **inhibited reactions**

Conclusion

- FPK-PCR model is a **kinetically more realistic** approach to analyzing real time PCR data, readily giving access to internal efficiency behavior.
- Reconstruction of the **entire chain of cycle efficiencies** reveals amplification steps underlying fluorescence increases.
- The FPK-PCR implements a **global efficiency model:** a window of application is not needed.
- The **FPK-PCR approach makes single reaction analysis a powerful tool** for widespread application.

Acknowledgment

The authors would like to thank the GMOlab section of the institute of Public health in Brussels, Belgium and Nancy Roosens in particular for their support during the research and development that lead to this publication. We acknowledge the support of Ghent University (Multidisciplinary Research Partnership “Bioinformatics: from nucleotides to networks”).